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ABSTRACT 
Many personal devices have transitioned from visual-controlled 
interfaces to speech-controlled interfaces to reduce costs and 
interactive friction, supported by the rapid growth in capa-
bilities of speech-controlled interfaces, e.g., Amazon Echo or 
Apple’s Siri. A consequence is that people who are deaf or 
hard of hearing (DHH) may be unable to use these speech-
controlled devices. We show that deaf speech has a high er-
ror rate compared to hearing speech, in commercial speech-
controlled interfaces. Deaf speech had approximately a 78% 
word error rate (WER) compared to a hearing speech 18% 
WER. Our findings show that current speech-controlled in-
terfaces are not usable by DHH people. Based on our find-
ings, significant advances in speech recognition software or 
alternative approaches will be needed for deaf use of speech-
controlled interfaces. We show that current speech-controlled 
interfaces are not usable by DHH people. 
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1. RELATED WORK 
Prior research has investigated how the lack of a feedback 

loop for deaf people who cannot hear their own speaking 
results in poor speech quality due vowel errors, intonation 
errors, and length errors [1, 2]. ASR software is generally 
trained with speech samples from hearing people, which re-
sults in very poor recognition of deaf speech. Even when 
used with limited possibilities, e.g., single digits, ASR for 
deaf speakers with poor speech intelligibility yielded a 13% 
Word Error Rate (WER) [3], compared to nearly no errors 
for hearing speech [4]. 
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Figure 1: Distribution of Clarke Sentence Scores. 

2. METHODOLOGY 

2.1 Deaf Speech Dataset 
We sampled from a subset of a large speech dataset of 

650 deaf and hard of hearing (DHH) individuals at the Na-
tional Technical Institute for the Deaf at Rochester Insti-
tute of Technology, which has an enrollment of around 1100 
deaf and hard of hearing students. The dataset consisted of 
samples taken from DHH individuals who took the Clarke 
Sentences intelligibility test [5]. The test has 60 sentence 
lists, each with 10 sentences of 10 syllables. The number of 
words varies across the sentences and lists. Each audio file 
has one speaker speaking one list from the Clarke sentence 
list. In each audio file, the speaker says the sentence number 
and then proceeds to say that sentence, and repeats until all 
the ten sentences are spoken. The audio files were recorded 
by one individual, then the samples were sent to a speech 
pathologist. The speech pathologist assigned an intelligibil-
ity score from 0 to 50. The score is computed by looking for 
50 target words within the sample for credit. A score of 50 
would indicate that the deaf person is generally intelligible 
to the speech pathologist, while a score of 30 means difficult 
to understand, and a score of 0 means completely unintelli-
gible. About half of all deaf individuals had scores of under 
40, which is usually unintelligible to people not used to deaf 
speech, as shown in Figure 1. 
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Figure 2: Intelligibility rating vs Word Error Rate 

2.2 ASR and WER Analysis 
We used the Microsoft Translator Speech API to create

transcriptions for each audio file. This API is used by busi-
nesses for transcriptions. As a commercial level software, it 
matches other similar transcription software [6, 7, 8]. We 
also used the National Institute of Standards and Technol-
ogy Speech Recognition Scoring Toolkit (SCTK) Version 
2.4.0.4 for the Word Error Rate calculations [9]. 

         

3. ANALYSIS RESULTS 

3.1 WER for Hearing Speakers 
We calculated the ASR transcription and WER analysis 

results for five hearing subjects who read various lists from 
the same Clarke Sentences database, The speech samples 
were recorded with a cell phone in a noisy environment with 
background noise in a lab with many people speaking and 
computers, which is similar to common use-case scenarios 
in using phone ASR services. The average WER was 18%. 
While the speech recognition was not close to perfect for 
hearing people, it was still passable. These numbers are 
expected from the current state of the art technology. The 
majority of voice command interfaces are currently found 
in cell phones and home assistants, which are often used 
in noisy environments. If we had repeated these recordings 
in the same setting as the deaf speech samples, we would 
expect an even lower WER. 

3.2 WER for Deaf Speakers 
We ran a sample of the deaf speech database through the 

Microsoft Translator Speech API. We used 45 total samples 
that were chosen by a naive listener who determined 15 good 
samples (40+), 16 mediocre samples (30-40), and 14 poor 
files (10-30). The error rates were extremely high over all 
samples at 77%, including 53% WER for the good samples. 

The average WER and standard deviation was calculated 
for each group, as shown in Figure 3.2. The average WER for 
the good speech group was significantly less than either the 
mediocre group or bad speech groups; a t-test comparison 
between the good and mediocre groups yielded p < 0.01. 

4. CONCLUSIONS 
The current WER of Microsoft Translator was too high for 

comfortable use. They were significantly poorer in perfor-
mance compared to hearing people under similar conditions. 
There are a number of factors that have an impact on the 
accuracy of automatic speech recognition systems with deaf 

Figure 3: Group vs average WER 

speech. The results also show much greater variance among 
deaf speakers, compared with hearing speakers. In order 
for ASR systems to recognize deaf speech as well as it does 
hearing speech requires a huge database of deaf speakers. 
While conceptually simple, it is still challenging. The deaf 
population is relatively small compared to the size of the 
hearing population, and have far more varied backgrounds. 

ASR systems are trained using huge hearing speaker datasets. 
The results show that even deaf speakers with “good” speech 
have worse accuracy compared with the average hearing 
speaker. Although the Clarke Sentence test is useful for 
speech pathology evaluation, it is less useful for providing 
more feedback to DHH people about the usability of current 
ASR interfaces, since the top rating of 50 does not distin-
guish between DHH speakers with high ASR accuracy and 
those with less ASR accuracy. It would be helpful to develop 
an automated test that provides feedback to DHH people on 
their use of ASR services such as Siri or Alexa. 
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