Failed Power Domination on Knödel Graphs

Abraham Glasser¹

Joint work with B. Jacob²

¹Computing and Information Sciences ²Science and Mathematics Department National Technical Institute for the Deaf Rochester Institute of Technology, Rochester, NY, USA

50th SEICCGTC Florida Atlantic University, Boca Raton, FL, USA March 4-8, 2019

RIT Rochester Institute of Technology

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

Outline

1 Introduction

- Notation
- Domination
- Zero Forcing
- Power Domination
- Failed Power Domination
- Applications

2 Results

General Extreme Values

- Knödel Graphs
- Complexity

Outline

1 Introduction

- Notation
- Domination
- Zero Forcing
- Power Domination
- Failed Power Domination
- Applications

2 Results

General Extreme Values

- Knödel Graphs
- Complexity

Notation

Graphs

- Made up of vertices and edges. Vertices are connected to each other with edges.
- G = (V, E), where V is the set of vertices, and E is the set of edges.

RIT Rochester Institute of Technology

Directed vs. Undirected

- We will only be working with undirected graphs
- N(v) := set of neighbors of a vertex

Domination

DOMINATE(G, S)

- 1: Assuming $S \subseteq V$
- 2: for $v \in S$ do
- 3: for $u \in N(v)$ do
- 4: **if** $u \notin S$ **then**
- 5: $S = S \cup \{u\}$
- 6: end if
- 7: end for
- 8: end for
- After domination has been performed, if S = V, then the initial set S is a *dominating set* of G
- The *domination number* of a graph, or the cardinality of the smallest dominating set of a graph, is noted γ(G)

Domination Examples

Figure 1: S is a not a dominating set.

Figure 2: S is a dominating set

Rochester Institute of Technology

RIT Rochester Insti < □ > < ⊕ > < ≡ > < ≡ >

Zero Forcing

ZERO_FORCE(G, S)

- 1: Assuming $S \subseteq V$
- 2: while S has not been changed do
- 3: for $v \in S$ do
- 4: **if** Exactly one empty vertex in N(v) **then**
- 5: Fill in that vertex and add it to S
- 6: end if
- 7: end for
- 8: end while
- If, after the zero forcing has been performed, S = V, then the initial set S is a *zero forcing set* of G.
- The zero forcing number of a graph is the cardinality of the smallest zero forcing set of a graph, and is noted F(G)

RIT Rochester Institute of Technology

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

Zero Forcing Examples

Figure 3: *S* is a not a zero forcing set.

Figure 4: *S* is a zero forcing set.

RIT Rochester Institute of Technology

Ξ.

イロト イヨト イヨト イヨト

- POWER_DOMINATE(G, S) {S will be updated at each step}
 - 1: DOMINATE(G, S)
 - 2: ZERO_FORCE(G, S)
- If, after the power domination has been performed, S = V, then the initial set S is a *power dominating set* of G.
- The power domination number of a graph is the minimum cardinality of such a power dominating set and is noted γ_p(G)

Power Domination Example

Figure 5: S is a power dominating set.

Failed Power Domination

γ̄_p The *failed power domination number* of a graph is the cardinality of the **largest** set that does not power dominate the graph.

Failed Power Domination Example

$$\bar{\gamma}_{p}(K_{5,3}) = 3$$

Figure 6: S is a failed power dominating set. If you add any more vertices to S, it will become a power dominating set.

RIT Rochester Institute of Technology

・ロト ・聞ト ・ヨト ・ヨト

Phasor Measurement Units

- Monitor electric power networks
- Expensive
- $\bar{\gamma}_p(G) + 1$ is the number of PMUs that you can put **anywhere** on the graph and monitor the entire graph.

Outline

1 Introduction

- Notation
- Domination
- Zero Forcing
- Power Domination
- Failed Power Domination
- Applications

2 Results

General Extreme Values

- Knödel Graphs
- Complexity

General Extreme Values

Let
$$n = |G.V|$$

Let denote a graph.

 $\bar{\gamma}_p(G) = n - 1$ if and only if G has an isolated vertex.

 $\bar{\gamma}_p(G) = n-2$ if and only if G contains K_2 as a component, and no isolated vertices.

Rochester Institute of Technology

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

General Extreme Values

- $\bar{\gamma}_p(G) = n 3$ if and only if G contains no components that are isolated vertices or K_2 and G contains a copy of
 - P₃ where only the middle vertex may be adjacent to other vertices in the V(G)

■ *K*₃ where at most one of the vertices may be adjacent to other vertices in *V*(*G*)

Rochester Institute of Technology

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

In this case $W_{6k,3}$ where k ≥ 2 .

RIT | Rochester Institute of Technology

(2, 8)

(2,7)

(2, 6)

(2, 5)

(2, 4)

(2,3)

(2, 2)

(2,1)

(2, 0)

Knödel Graphs Initial Sets

RIT Rochester Institute of Technology

Knödel Graphs – Domination Step

RIT Rochester Institute of Technology

We cannot fill in any more vertices. The Zero Forcing step is stalled and the initial set fails to power dominate.

FAILED POWER DOMINATING SET (FPDS) Instance: a graph G = (V, E) and a positive integer kQuestion: Does G have a proper stalled subset of cardinality at least k?

Theorem

FPDS is NP-complete.

Email me if you want to see the proof :-)

RIT Rochester Institute of Technology

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ●

For more information, please do not hesitate to contact

abraham.glasser@mail.rit.edu bcjntm@rit.edu

