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Notation

Graphs
Made up of vertices and edges. Vertices are connected to each
other with edges.
G = (V ,E ), where V is the set of vertices, and E is the set of
edges.
Directed vs. Undirected

We will only be working with undirected graphs

N(v) := set of neighbors of a vertex



Domination

DOMINATE(G, S)

1: Assuming S ⊆ V
2: for v ∈ S do
3: for u ∈ N(v) do
4: if u /∈ S then
5: S = S ∪ {u}
6: end if
7: end for
8: end for

After domination has been performed, if S = V , then the
initial set S is a dominating set of G
The domination number of a graph, or the cardinality of the
smallest dominating set of a graph, is noted γ(G )



Domination Examples
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Figure 1: S is a not a dominating set.

→

Figure 2: S is a dominating set



Zero Forcing

ZERO FORCE(G, S)

1: Assuming S ⊆ V
2: while S has not been changed do
3: for v ∈ S do
4: if Exactly one empty vertex in N(v) then
5: Fill in that vertex and add it to S
6: end if
7: end for
8: end while

If, after the zero forcing has been performed, S = V , then the
initial set S is a zero forcing set of G.
The zero forcing number of a graph is the cardinality of the
smallest zero forcing set of a graph, and is noted F(G)



Zero Forcing Examples

→

Figure 3: S is a not a zero forcing set.

→ → →

Figure 4: S is a zero forcing set.



Power Domination

POWER DOMINATE(G, S) {S will be updated at each step}
1: DOMINATE(G, S)
2: ZERO FORCE(G, S)

If, after the power domination has been performed, S = V ,
then the initial set S is a power dominating set of G.
The power domination number of a graph is the minimum
cardinality of such a power dominating set and is noted γp(G )



Power Domination Example

Domination−−−−−−−→
Zero

Forcing−−−−→

Figure 5: S is a power dominating set.



Failed Power Domination

γ̄p
The failed power domination number of a graph is the
cardinality of the largest set that does not power dominate
the graph.



Failed Power Domination Example

γ̄p(K5,3) = 3

Domination−−−−−−−→
Zero

Forcing−−−−→

Figure 6: S is a failed power dominating set. If you add any more vertices
to S, it will become a power dominating set.



PMUs

Phasor Measurement Units
Monitor electric power networks
Expensive

γ̄p(G ) + 1 is the number of PMUs that you can put
anywhere on the graph and monitor the entire graph.
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General Extreme Values

Let n=|G .V |

Let denote a graph.

γ̄p(G ) = n − 1 if and only if G has an isolated vertex.

isolated vertex

γ̄p(G ) = n − 2 if and only if G contains K2 as a component, and
no isolated vertices.

K2 component



General Extreme Values

γ̄p(G ) = n − 3 if and only if G contains no components that
are isolated vertices or K2 and G contains a copy of

P3 where only the middle vertex may be adjacent to other
vertices in the V (G )

P3

K3 where at most one of the vertices may be adjacent to other
vertices in V (G )

K3



Knödel Graphs W#vertices, degree

In this case W6k,3 where k ≥ 2.

(2, 0)(1, 0)
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Knödel Graphs Initial Sets
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Knödel Graphs – Domination Step
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Knödel Graphs – Zero Forcing Step

We cannot fill in any more vertices. The Zero Forcing step is
stalled and the initial set fails to power dominate.
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Complexity

FAILED POWER DOMINATING SET (FPDS)
Instance: a graph G = (V ,E ) and a positive integer k
Question: Does G have a proper stalled subset of cardinality at
least k?

Theorem

FPDS is NP-complete.

Email me if you want to see the proof :-)



Thank you!

For more information, please do not hesitate to contact

abraham.glasser@mail.rit.edu
bcjntm@rit.edu
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