Failed Power Domination: Computational Results, Extreme Values, and Complexity

Abraham Glasser¹

Joint work with B. Jacob², E. Lederman¹

¹Computing and Information Sciences ²Science and Mathematics Department National Technical Institute for the Deaf Rochester Institute of Technology, Rochester, NY, USA

MAA Seaway Section Meeting The College at Brockport, Brockport, NY, USA April 13-14, 2018

イロト スポト メヨト メヨト

Outline

Introduction

Notation Domination Zero Forcing Power Domination Failed Power Domination Applications

Results

Computational Results Extreme Values Complexity

Outline

Introduction

Notation Domination Zero Forcing Power Domination Failed Power Domination Applications

Results

Computational Results Extreme Values Complexity

Notation

Graphs

- Made up of vertices and edges. Vertices are connected to each other with edges.
- ► G = (V, E), where V is the set of vertices, and E is the set of edges.

イロト スポト メヨト メヨト

э

- Directed vs. Undirected
 - We will only be working with undirected graphs
- ► N(v) := set of neighbors of a vertex

Domination

▶ DOMINATE(G, S) 1: Assuming $S \subseteq V$ 2: for $v \in S$ do 3: for $u \in N(v)$ do 4: if $u \notin S$ then 5: $S = S \cup \{u\}$ 6: end if 7: end for

- 8: end for
- ► If, after the domination has been performed, S = V, then the initial set S is a *dominating set* of G
- ► The domination number of a graph, or the cardinality of the smallest dominating set of a graph, is noted \(\gamma(G)\)

э

ヘロト 人間 ト 人 田 ト 人 田 ト

Domination Examples

Figure: $S = \{v_1, v_2, v_3\}$ is not a dominating set

Figure: S is a dominating set

ヘロト A部ト A注ト A注ト

Zero Forcing

- ZERO_FORCE(G, S)
 - 1: Assuming $S \subseteq V$
 - 2: while S has not been changed do
 - 3: for $v \in S$ do
 - 4: **if** Exactly one empty vertex in N(v) **then**
 - 5: Fill in that vertex and add it to S
 - 6: end if
 - 7: end for
 - 8: end while
- If, after the zero forcing has been performed, S = V, then the initial set S is a zero forcing set of G.
- ▶ The zero forcing number of a graph is noted F(G)

イロト イロト イヨト

Zero Forcing Examples

S is a zero forcing set. S is not a zero forcing set.

イロト イロト イヨト イヨト

Power Domination

POWER_DOMINATE(G, S)

- 1: DOMINATE(G, S) {S will be updated}
- 2: ZERO_FORCE(G, S)
- ► If, after the power domination has been performed, S = V, then the initial set S is a power dominating set of G.

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

• The power domination number of a graph is noted γ_p

Power Domination Example

イロト イロト イヨト イヨト

Failed Power Domination

- $\bullet \bar{\gamma}_p$
- The failed power domination number of a graph is the cardinality of the largest set that does not power dominate the graph.

Failed Power Domination Example

 $\overline{\aleph}_{\rho}(k_{5,3})=3$

S is a failed power dominating set. If you add just one more vertex to S, it will be a power dominating set.

イロト イポト イヨト イヨト

PMUs

- Phasor Measurement Units
 - Monitor electric power networks
 - Expensive
- *γ*_p(G) + 1 is the number of PMUs that you can put
 anywhere on the graph and monitor the entire graph.

Outline

Introduction

Notation Domination Zero Forcing Power Domination Failed Power Domination Applications

Results

Computational Results Extreme Values Complexity

Program and Results

N = G.V	Number of graphs with $ar{\gamma}_p(G){=}0$	Total possible graphs with N vertices $=2^{(N \ choose \ 2)}$
0	1	1
1	1	1
2	1	2
3	4	8
4	22	64
5	218	1024
6	3868	32768
7	108136	2097152

Extreme Values

Let
$$n = |G.V|$$

Let \square denote some graph.
 $\overline{\delta}_{p}(G) = n - 1$ if and only if G has an isolated vertex.
 $\square \circ \square$ isolated vertex
 $\overline{\delta}_{p}(G) = n - 2$ if and only if G contains K_{2} as a component and no isolated vertices
 $\square \circ \square \land \square$ K_{2} component

Extreme Values

- $\bar{\gamma}_p(G) = n 3$ if and only if G contains no components that are isolated vertices or K_2 and G contains a copy of
 - ▶ P₃ where only the middle vertex may be adjacent to other vertices in the V(G), or
 - ► K₃ where at most one of the vertices may be adjacent to other vertices in V(G)

Complexity

FAILED POWER DOMINATING SET (FPDS) Instance: a graph G = (V, E) and a positive integer kQuestion: Does G have a proper stalled subset of cardinality at least k?

Theorem *FPDS is NP-complete.*

The proof consists of

- 1. Show that FPDS is NP-hard by constructing a polynomial reduction from the independent set problem (does G contain an independent set of cardinality ℓ)?
- 2. It is known that determining whether or not set $S \subseteq V$ with $|S| \leq k$ is a power dominating set is verifiable in polynomial time.

イロト スポト メヨト メヨト

For more information, please do not hesitate to contact atg2036@rit.edu bcjntm@rit.edu erl3193@rit.edu

